资料图:格拉西莫夫。
“最高水平的专业人士”
2022年10月,俄国防部宣布任命有着“末日将军”之称的苏罗维金担任俄特别军事行动总指挥,三个月后,俄国防部再次对这一职务作出调整。
可以看出,这次调整提高了特别军事行动的领导层级,根据俄罗斯官方的解释,原因有二:
1、与所需解决的任务规模扩大有关;
2、俄军需要组织各军兵种进行更加紧密的协同,提高联合部队各类保障的质量和管理效率。
那么,这次被委以重任的格拉西莫夫有何来头?
1955年,瓦列里·格拉西莫夫出生于喀山的一个工人家庭,毕业于喀山高等坦克指挥学校和俄罗斯武装部队总参谋部军事学院。
军事生涯之初,格拉西莫夫先后在波兰、俄远东、波罗的海国家和俄莫斯科军区服役,曾担任排长、连长、营长等基层指挥官。2006年起,格拉西莫夫历任列宁格勒军区司令、莫斯科军区司令。2012年,成为俄联邦武装力量总参谋长兼国防部第一副部长。
俄杜马议员索博列夫表示,格拉西莫夫曾长时间指挥俄最大的第58集团军,策划过大规模军事行动并经常取得成功,是“最高水平的专业人士”。据悉,格拉西莫夫获得过圣乔治勋章、“亚历山大·涅夫斯基”勋章、“祖国功勋”勋章,2016年被授予“俄罗斯英雄”荣誉。
2014年,格拉西莫夫曾被欧盟列入制裁名单。2022年,俄对乌发起特别军事行动后,格拉西莫夫又登上了美国制裁清单。
俄国防部2022年7月发布的图片中,俄军总参谋长兼国防部第一副部长格拉西莫夫(左)前往一指挥所,视察俄军参与特别军事行动的部队。俄罗斯《论据与事实报》称,2022年格拉西莫夫曾多次访问特别军事行动区,“非常了解乌克兰发生的事情”。还有西方媒体曾报道格拉西莫夫在伊久姆市遭暗杀未遂,乌总统办公室顾问阿列斯托维奇随后证明此事。
俄军事专家博卡德列夫曾表示,格拉西莫夫在第二次车臣战争中实际指挥过战斗并在多个大军区任职,是一位“有作战经验、有原则和被检验过的将军”。俄《共青团真理报》则称他“有很强的指挥能力和作出非标准决定的能力”。
俄《独立报》指出,从俄国防部发布的信息中可见,这次任命后,格拉西莫夫以俄联邦武装力量总参谋长身份出任特别军事行动总指挥,可能意味着俄政治领导层为军队设定了明确的任务——在特别军事行动中获胜。
西方军援承诺接踵而至
值得注意的是,俄方这次“换将”,正值一批西方国家再次宣布对乌克兰进行军援之际。
分析指出,由于乌克兰可能很快将开始从美国等北约国家收到大量重型武器,任命格拉西莫夫似乎意味着俄军将向进攻行动过渡。
资料图:美国飞机将军事援助物资运抵乌克兰基辅鲍里斯波尔国际机场。2023年初,法国总统马克龙在与乌克兰总统泽连斯基的通话中表示,法国将向乌克兰提供轻型坦克,成为首个提供这类军备给乌克兰的西方国家。
2022年乌克兰危机爆发以来,法国已为乌克兰提供最先进的火炮、装甲运兵车、防空导弹和防空系统。但由于担心激怒俄罗斯,马克龙此前一直没有答应为乌军提供更高性能的装备。法国国防部表示,法、乌国防部长将很快举行会谈。
德国总理朔尔茨此前曾向基辅承诺,将在2023年一季度内向乌克兰交付40辆“黄鼠狼”步兵战车和一套“爱国者”防空系统。
意大利外长也表示,意大利正准备向乌克兰提供新的一揽子军事援助,并就相关问题与法国展开讨论。
2022年12月首次宣布将向乌克兰提供“爱国者”防空导弹系统后,美国军方又在今年1月6日宣布了迄今“规模最大的一轮对乌军事援助”,总价值达28.5亿美元。
美加两国元首近期会晤后,加拿大总理称,将为乌克兰购买美国制造的“国家先进地对空导弹系统”(NASAMS)。加拿大或将“首次向乌克兰提供防空系统”。
俄取得数月来“最大胜利”?
2022年10月克里米亚大桥爆炸事件发生后,苏罗维金成为俄特别军事行动总指挥,乌克兰多地遭到导弹袭击,基础设施受到打击,多地频频拉响防空警报,紧急停电也一轮接一轮。
2022年11月16日,停电期间的乌克兰首都基辅。此后局势持续胶着,俄乌军方在巴赫穆特等方向接触线沿线上炮火不断。不久前的跨年之夜,乌军对顿涅茨克马克耶夫卡地区的俄军临时部署点进行火箭弹袭击,造成俄军89人死亡。
东正教的圣诞节期间,俄总统普京宣布停火36小时,以给予信教者进行宗教活动的机会。但普京的停火提议遭到乌方拒绝,美国方面则继续“拱火”,称“不相信”俄罗斯提议的停火背后的意图。
近期,激烈的交锋又在索列达尔展开,俄私人军事公司瓦格纳集团宣布夺控索列达尔全境。俄总统新闻秘书表示,索列达尔地区进展“积极”。
据悉,索列达尔位于阿尔乔莫夫斯克-谢韦尔斯克防线的中间,对乌克兰具有战略意义,乌军在这里打造了强大的防御工事。乌总统泽连斯基表示,索列达尔的战斗对乌军来说“极其艰难”。
《纽约时报》称,如果消息属实,这将是俄罗斯数月来的首次重大胜利。
我国空间新技术试验卫星第二批科学与技术成果发布****** 记者从中科院微小卫星创新研究院获悉,我国“创新X”系列首发星——空间新技术试验卫星第二批科学与技术成果近日发布。这批成果主要包括获得我国首幅太阳过渡区图像、探测到迄今最亮的伽马射线暴、首次获得全球磁场勘测图等。 01 46.5nm极紫外成像仪获得我国首幅太阳过渡区图像 46.5nm极紫外太阳成像仪(SUTRI)是国际首台基于多层膜窄带滤光技术的46.5nm太阳成像仪,用于探测50万度左右的太阳过渡区(太阳色球与日冕之间的层次),由国家天文台联合北京大学、同济大学、西安光学精密机械研究所和微小卫星创新研究院共同研制。自2022年8月30日载荷开机以来已经获取了超过1.6TB的探测数据,成功实现了我国首次太阳过渡区探测。这也是人类近半个世纪来首次在46.5nm波段拍摄太阳的完整图像。SUTRI拍摄的图像清晰地显示了过渡区网络组织、活动区冕环系统、日珥和暗条、冕洞等结构(如图2),这些结构的观测特征表明,SUTRI拍摄的确实是从太阳低层大气往日冕过渡的结构,符合预期。SUTRI已探测到多个耀斑、喷流、日珥爆发和日冕物质抛射事件(如图3),表明其数据适合研究各种类型的太阳活动现象。此外,SUTRI还发现活动区普遍存在50万度左右的、朝向太阳表面的物质流动,这些流动在太阳大气的物质循环过程中占有重要地位。目前SUTRI一切功能正常,在轨测试和标定结束后,SUTRI观测的科学数据将向国内外太阳物理和空间天气同行全部开放。 △图1 “创新X”首发星——空间新技术试验卫星(SATech-01) △图2 SUTRI在2022年9月29日观测到的太阳活动图(图片由SUTRI科学团队提供) △图3 SUTRI在2022年9月23日观测到的一次太阳爆发事件(图片由SUTRI科学团队提供) 02 高能爆发探索者(HEBS)捕获到迄今为止最亮伽马暴 由中科院高能物理研究所研制的高能爆发探索者(HEBS)于北京时间2022年10月9日21时17分,与我国慧眼卫星和高海拔宇宙线观测站同时探测到迄今最亮的伽马射线暴(编号为GRB 221009A)。根据HEBS的精确测量结果,该伽马暴比以往人类观测到的最亮伽马射线暴还亮10倍以上。由于该伽马射线暴的亮度极高,国际上绝大部分探测设备均发生了严重的数据饱和丢失、脉冲堆积等仪器效应,难以获得精确测量结果。HEBS凭借创新的探测器设计以及新颖的高纬度观测模式设置,探测器经受住了高计数率的考验,获得了高时间分辨率的光变曲线,以及10千电子伏至5兆电子伏的宽能段能谱。HEBS极为宝贵的精确测量结果对于揭示伽马射线暴的起源和辐射机制具有重要意义。 国家天文台和上海技术物理研究所研制的EP探路者龙虾眼X射线成像仪(LEIA)于10月12日也成功对这一伽马射线暴开展了观测,探测到了伽马射线暴X射线余辉。这也是国际上首次用龙虾眼型X射线望远镜探测到伽马射线暴。 △图4 高能爆发探索者(HEBS)发现并精确测量迄今最亮的伽马射线暴,打破多项纪录。 03 国产量子磁力仪首次空间应用并获得全球磁场图 由中国科学院国家空间科学中心和沈阳自动化研究所联合研制的国产量子磁力仪(CPT)及伸展臂,可实现全球地磁矢量和标量高精度测量。2022年11月7日,多级套筒式无磁伸展臂顺利展开,将各传感器探头伸出约4.35米距离,处于伸展臂顶端的CPT原子/量子磁力仪探头、AMR磁阻磁力仪探头、NST星敏感器获取了有效探测数据,首次在轨验证了磁场矢量和姿态一体化同步探测技术,磁测量噪声峰峰值<0.1nT,实现了国产量子磁力仪的首次空间验证与应用。 △图5 CPT磁测系统“多级套筒式无磁伸展臂”地面展开测试(图片由沈自所、空间中心和卫星团队提供) △图6 量子磁力仪首张全球磁场勘测图(图片由空间中心太阳活动与空间天气重点实验室提供) △图7 NST星敏感器相对于卫星本体的姿态数据(图片由空间中心和中科新伦琴NST星敏团队提供) 04 空间载荷、平台新技术成果丰富 由中国科学院长春光学精密机械与物理研究所空间新技术部研制的多功能一体化相机,首次采用基于共口径多出瞳光学系统新体制,在轨实现集可见光、长波红外、彩色微光于一体的空间光学遥感观测。相机于2022年9月24日开机,成功取得首张170km×42km大幅宽地面遥感图像(如图8),探索了单台相机即可同时实现多谱段多模态遥感成像的新模式,为我国未来高集成度一体化空间光学遥感载荷发展提供了技术储备。 △图8 多功能一体化相机对地宽幅遥感成像图(图片由长春光学精密机械与物理研究所提供) 由中国科学院半导体研究所、自动化研究所、微小卫星创新研究院及浙江大学航空航天学院空天信息技术研究所联合研制的异构多核智能处理单元也取得了首批成果。半导体所的低功耗边缘计算型智能遥感视觉芯片,实现了遥感图像的高速智能化目标检测;自动化所的通用智能系统验证了基于高速交换网络的异构多处理器模块化、弹性化硬件架构;浙江大学的国产AI系统装载了细胞分割算法和飞机识别算法,数据结果与地面孪生系统数据一致,在功耗10瓦条件下算力达到22Tops,验证了国产AI器件的在轨智能图像处理能力。 △图9 边缘计算型遥感视觉芯片检测遥感目标示意图(图片由中科院半导体所提供) 中科院微小卫星创新院的可展收式辐射器成功在轨实现首次应用,辐射器执行机构已顺利完成六十余次展开和收拢动作,连续五轨动态试验结果(如图10)表明环路热管-可展收式辐射器集成系统在负载工作时段启动性能良好,辐射器连续展开-收拢可实现散热能力在轨大范围调控。 △图10 环路热管-可展收式辐射器集成系统连续五轨智能热控测试结果 国家空间科学中心研制的空间元器件辐射效应试验平台载荷开机运行良好,搭载的元器件在测试期间均工作正常。 “科学与技术成果的涌现体现了我们对这颗卫星‘创新X,创新无极限’的定位,开创了新技术众筹模式的先河。”“力箭一号”工程副总师兼卫星系统总师张永合说,“这些新载荷、新技术产品都是各参与方自主投入的,不少是从0到1的创新,通过试验星将创新技术快速集成并飞行验证,可以加快核心关键技术从基础研究到在轨应用的成果转化。” 2022年7月27日12时12分,由中国科学院自主研制的迄今我国最大固体运载火箭“力箭一号”(ZK-1A)在酒泉卫星发射中心成功发射,采用“一箭六星”的方式,将“创新X”系列首发星——空间新技术试验卫星等六颗卫星送入预定轨道。2022年9月5日,空间新技术试验卫星(SATech-01)发布了首批科学成果,包括龙虾眼X射线成像仪(LEIA)的国际首幅宽视场X射线聚焦成像天图,伽马射线暴载荷(HEBS)的首个伽马暴等。 作为我国“创新X”系列的首发星,未来一段时间,空间新技术试验卫星搭载的几种新型推进系统等载荷也将开展在轨试验,卫星上的四个科学载荷也已进入常规化观测,陆续将会获得更多科学和技术成果。 (总台央视记者 帅俊全 褚尔嘉)
|